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At the beginning

• Classical Hamilton-Jacobi equations arose, maybe first, inside the framework
of the celestial mechanics and early canonical transformations theory:
Lagrange, Hamilton, Jacobi, Poisson, Poincaré, Weierstrass,...

• .... to solve the Hamiltonian systems of ODE by means of a suitable solution
(a complete integral) of a H-J equation, a PDE

• afterwards, H-J equations became central into the study of wave
propagation ... in an inverse direction:

to solve a PDE equation (H-J for wave, e.g. eikonal), by means of solutions
(characteristic curves), a Hamiltonian systems of ODE
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Weak solutions

• Hopf, Kružkov, Benton,
and few others,
were the true pioneers towards global week solutions for H-J equations

• at the end, in the early 80’s, Crandall-Evans-Lions drew viscosity solutions
theory

• In this new environment, the 1965 weak proposal by Hopf is shown to be,
precisely, the viscous solution of an initial Cauchy problem [Bardi and Evans]
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Weak KAM

and finally, here
• Weak KAM theory
Lions-Papanicolaou-Varadhan, Fathi,. . .

a sort of closure of the above order of ideas:

• a powerful effort to come back the original issue:
solve, even though in a weak form, a stationary H-J,
crucial
for the flow problems of analytical mechanics
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From Hopf 1965

• Come back a little to Hopf

• here the exemplary review of the Hopf’ paper by Oleinik :
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Hopf
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Hopf

• Some aspects to point out from the above 1965 paper by Hopf:

• The H-J equation is evolutive: ∂z
∂t

+ f( ∂z
∂x

) = 0, and the Hamiltonian f(u) is
convex

• there is an ‘enveloping’ procedure –like Huygens Principle– of global
Generating Functions. G. F. : suitable families of classical solutions of the
H-J equation

• and the final outcome of the above enveloping procedure gives us a weak
Lipschitz solution z(t, x)
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Complete Integrals as Generating Functions

• S(t, x, a) := −f(a)t+ x · a, Complete Integral, is a solution of
• ∂z

∂t
+ f( ∂z

∂x
) = 0 for any a ∈ R

• so that
•
W (t, x, y; a) := S(t, x, a)− S(t, y, a)
that is
•
W (t, x, y; a) = −f(a)t+ (x− y) · a
• becomes a sort of Green (geometrical) propagator,

•
z(t, x; y, a) = W (t, x, y; a) + z0(y), (prototype of Generating Function),
• y: initial point x: final point
• y and a: auxiliary parameters, to remove by enveloping inf/sup procedure,
obtaining, at the end, the Lipschitz solution z(t, x)

Variational solutions of Hamilton-Jacobi equations - 1 Prologue



What we learn from it?

• After Hopf, the use of generating functions has not been fully friendly inside
viscosity environment,
nevertheless,
• Bardi, Capuzzo-Dolcetta, Faggian, Osher,... : important constructions,

• but no general viscosity-like theory based on generating functions is still
known
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A road map

• A systematic search on H-J by Generating Functions arose in ’80

• First, in a merely geometric context: Tulczyjew, Benenti, Libermann, Marle...

• Then, in a more topological and variational environment: Chaperon,
Laudenbach, Sikorav, Viterbo...
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A road map

• We will see that the notion of Generating Function is strictly connected to
the Lagrangian submanifolds of the symplectic manifolds,

• so, we will begin from the description of the symplectic environment
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A road map

• A systematic search on H-J by Generating Functions arose in ’80
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Background: Symplectic manifolds

•

“The name complex group formerly advocated by me in allusion
to line complexes, as these are defined by the vanishing of
antisymmetric bilinear forms, has become more and more
embarrassing through collision with the word complex in the
connotation of complex number. I therefore propose to replace
it by the corresponding Greek adjective symplectic.”

Hermann Weyl, The classical Groups.

•
Alan Weinstein’s warning:

•
symplectic is also the name for a bone in the head of the Teleòstei
(fishes)
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Symplectic manifolds

• (P, ω) is a symplectic manifold if :
P is a manifold,
• ω ∈ Ω2(P ) is a 2-form, closed (dω = 0) and non degenerate
• This is forcing: dimP = 2n

• Main example, cotangent bundles:
• P = T ∗M , where M is a n-dim (base) manifold
• in this case: ω = dϑ where ϑ is the Liouville 1-form,
• ϑ =

∑
i pidq

i ϑ ∈ Ω1(T ∗M)
• ω = dϑ =

∑
i dpi ∧ dq

i or : ω =
∑
i(dpi ⊗ dq

i − dqi ⊗ dpi)

• Rem: ‘more general’ 1-forms on T ∗M are like:
θ̄ =

∑
iAi(q, p)dq

i +
∑
j B

j(q, p)dpj
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Lagrangian submanifolds

• An embedding j : Λ→ T ∗M is called Lagrangian if
• (i) Λ is of dimension n = dimT∗M

2
= dimM

• (ii) j∗ω = 0 (or: ω|Λ = 0)

• j (Λ) is said a Lagrangian submanifold of (T ∗M,ω)

• (ii) ⇒ 0 = j∗dϑ = dj∗ϑ that is
• j∗ϑ (or: ϑ|Λ) is closed

• An embedding j : Λ→ T ∗M such that the pull-back j∗ϑ is exact
• is called exact Lagrangian embedding into T ∗M
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Parameterization of the Lagrangian submanifolds 1

• Example:
The image im(µ) of a closed 1-form µ : M → T ∗M , dµ = 0,

µ : M → T ∗M , dµ =
∑
ij
∂µi
∂qj

dqj ∧ dqi = 0

is a Lagrangian submanifold

• in fact:
•
• (i) dim(im(µ)) = n

• (ii) ω|im(µ) =
∑
i dpi ∧ dq

i|im(µ) =
∑
ij

∂µi
∂qj︸︷︷︸
sym

dqj ∧ dqi︸ ︷︷ ︸
skw

= 0

• In particular, for any f : M → R, (df is an exact 1-form)

•
im(df) is a Lagrangian submanifold
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Parameterization of the Lagrangian submanifolds 2

• Conversely, giving a Lagrangian Λ ⊂ T ∗M ,

j πM
Λ ↪→ T ∗M −→ M
λ 7→ (q(λ), p(λ)) 7→ q(λ),

in case πM ◦ j is locally invertible,

rkD(πM ◦ j)(λ) = n = max

• by [inverse function th.],

M 3 q 7→ λ̄(q) ∈ Λ

• by [Poincaré lemma],
Λ 3 λ 7→ f̄(λ) ∈ R

is a local primitive of the closed j∗ϑ, df̄ = j∗ϑ,
• then Λ =locally im(df) for f(q) := f̄ ◦ λ̄(q)

• In other words; any Lagrangian submanifold, locally transverse to the fibers
of the projection πM : T ∗M →M , is parameterized by some suitable (local)
real valued function f .
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Parameterization of the Lagrangian submanifolds 3

• Back to the general setting,

j πM
Λ ↪→ T ∗M −→ M
λ 7→ (q(λ), p(λ)) 7→ q(λ),

• what’s happening when

rkD(πM ◦ j)(λ) < n ?

• Λ is ‘multivalued’, like a Riemann surface in Complex Analysis,

• ⇒ Maslov-Hörmander Theorem (it is a local theorem):

Maslov V.P., Perturbation theory and asymptotic methods, Moscow, 1965

Hörmander L., Fourier integral operators I, Acta Math., 1971
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Examples of Lagrangian submanifolds - pictures
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Maslov-Hörmander Theorem

• Maslov-Hörmander Theorem : In any situation with respect transversality
to the fibers of πM , locally, Lagrangian submanifolds are necessarily descripted
by Generating Families1 W (q, u):

M × Rk 3 (qi, uA) 7−→W (qi, uA) ∈ R

• in the following way:

Λ = {(q, p) : pi =
∂W

∂qi
(qi, uA), 0 =

∂W

∂uB
(qi, uA)} (∗)

• Furthermore, zero in Rk is a regular value for the map
Q× Rk 3 (q, u) 7→ ∂W

∂u
∈ Rk, that is

rk

(
∂2W

∂uA∂qi
∂2W

∂uA∂uB

) ∣∣∣
(∗)

= k(= maximal). (∗∗)

1Sometimes said Morse Families
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Maslov-Hörmander Theorem

• u = (uA)A=1,...,k ∈ Rk: auxiliary parameters

• In the case of transversality, we can choose k = 0, so W = W (q)

• In general, we have to choose: k ≥ dimM − rk[D(πM ◦ j)(λ0)]

⇒ We cannot involve a number of aux. parameters
smaller than the loss of the rank of D(πM ◦ j)(λ0)
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Maslov-Hörmander Theorem - Uniqueness

• The above description of the Generating Families is unique up to the
following three operations2 3:

• 1. Addition of constant:
W (q;u) = W (q;u) + const. ≈W (q;u) (trivial)

• 2. Stabilization (i.e., addition of n.deg. quadratic forms):

W (q;u, v) = W (q;u) + vTAv ≈ W (q;u) v ∈ Rk̄, ∀ detA 6= 0

• 3. Fibered diffeomorphism:
For any fibered diffeomorphism

M × Rk −→M × Rk

(q, v) 7−→ (q, ū(q, v))

W (q; v) := W (q; ū(q, v)) ≈ W (q;u)

2A. Weinstein, Lectures on symplectic manifolds, 1976
3P. Libermann, C.-M. Marle, Symplectic geometry and analytical mechanics, 1987
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Maslov-Hörmander Theorem - Uniqueness

Checking the invariance under fibered diffeomorphisms (Operation 3.):

M × Rk −→M × Rk

(q, v) 7−→ (q, ū(q, v))

W (q; v) := W (q; ū(q, v))

Λ =
{

(q, p) : p = ∂W
∂q

(q; v), 0 = ∂W
∂v

(q; v)
}

=
{

(q, p) : p = ∂W
∂q

+ ∂W
∂u

∂ū
∂q
, 0 = ∂W

∂u

∂ū

∂v︸︷︷︸
det6=0

}

=
{

(q, p) : p = ∂W
∂q
, 0 = ∂W

∂u

}
= Λ ⇒ W (q; v) ≈ W (q;u)
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Maslov-Hörmander Theorem - Full reduction of parameters

• By Operation 2., i.e., Stabilization by adding quadratic forms,
the number of aux. parameters can increase

• The number of aux. parameters can also decrease:

Whenever the max rank of

rk

(
∂2W

∂uA∂qi
∂2W

∂uA∂uB

) ∣∣∣
∂W
∂uA

=0
= k(= maximal)

can be detected from k × k-matrix : det ∂2W
∂uA∂uB

∣∣∣
∂W
∂uA

=0
6= 0

it is possible, locally, fully to remove all the aux. par.; by implicit function th.,

∂W

∂uA
= 0⇒ uA = ûA(q)

• so
Ŵ (q) := W (q, ûA(q))

is a Generating Function for the same Lagrangian submanifold:

p =
∂Ŵ

∂q
=
∂W

∂q
(q, û(q)) +

∂W

∂u
(q, û(q))︸ ︷︷ ︸
=0

∂û

∂q
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Maslov-Hörmander Theorem - Partial reduction of parameters

• By Operation 2., i.e., Stabilization by adding quadratic forms,
the number of aux. parameters can increase

• The number of aux. parameters can also decrease:

Whenever from the k × k-matrix ∂2W
∂uA∂uB

rk

(
∂2W

∂uA∂qi
∂2W

∂uA∂uB

) ∣∣∣
∂W
∂uA

=0
= k(= maximal)

it is possible to detect some (smaller) non-degenerate h× h-sub-matrix, h ≤ k,

det
∂2W

∂uα∂uβ
6= 0, α, β = 1, . . . , h ≤ k

then, by implicit function th.,

∂W

∂uα
(q, uα, uΓ) = 0 ⇒ uα = ûα(q, uΓ), Γ = h+ 1, . . . , k

•
Ŵ (q, uΓ) := W (q, ûα(q, uΓ))

is a Generating Function for the same Lagrangian submanifold.
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Canonical Transformations

• Consider two manifolds, or two copies of a same manifold Q:
• Q1 and Q2

• T ∗Q1 and T ∗Q2

• (T ∗Q1, ω1) and (T ∗Q2, ω2)
• Diffeomorphisms

f : T ∗Q1 −→ T ∗Q2

(q̄, p̄) 7−→ f(q̄, p̄) = (q, p)

preserving the respective symplectic structures, that is,
•

ω1 = f∗ω2

• are said Canonical Transformations or Symplectomorphisms
• Main example: At any fixed time t ∈ R, flows of Hamilton ode systems φtXH
are Canonical Transformations:

d

dt
φtXH = XH(φtXH )
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Other Symplectic Manifolds: a frame for Canonical Transformations

• Consider the following graph-structure: P := T ∗Q1 × T ∗Q2

with projections:

PR1 PR2

T ∗Q1 ←− T ∗Q1 × T ∗Q2 −→ T ∗Q2

• Equip T ∗Q1 × T ∗Q2 with the closed 2-form

Ω := PR∗2ω2 − PR∗1ω1

• It turns out that (T ∗Q1 × T ∗Q2,Ω) is a symplectic manifold

• Theorem A diffeomorphism f : T ∗Q1 → T ∗Q2 is Canonical iff

Λ := graph (f) ⊂ T ∗Q1 × T ∗Q2

is a Lagrangian submanifold of the symplectic manifold (T ∗Q1 × T ∗Q2,Ω).

• In fact:
0 = Ω|graph (f) = f∗(ω2)− ω1
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T ∗Q1 × T ∗Q2 is isomorphic to T ∗(Q1 ×Q2)

• Observe that T ∗Q1 × T ∗Q2 is isomorphic in a natural way to T ∗(Q1 ×Q2),

T ∗Q1 × T ∗Q2

PR1

xxqqqqqqqqqqq
PR2

&&MMMMMMMMMMM

T ∗Q1 T ∗(Q1 ×Q2)

ϕ

OO

T ∗Q2

TQ1

τQ1

��

T (Q1 ×Q2)

τQ1×Q2

��

Tpr1oo Tpr2 // TQ2

τQ2

��
Q1 Q1 ×Q2

pr1oo pr2 // Q2

in local charts:

ϕ(q(1), q(2); p(1), p(2)) = (q(1), p(1); q(2), p(2)).
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Maslov-Hörmander in (T ∗Q1 × T ∗Q2,Ω)

• We recall that the setting of Maslov-Hörmander’s th. in T ∗Q was laid down
on

j πQ
Λ ↪→ T ∗Q −→ Q
λ 7→ (q(λ), p(λ)) 7→ q(λ),

W : Q× Rk → R (q, u) 7→W (q, u)

Λ =
{
p =

∂W

∂q
(q, u), 0 =

∂W

∂u
(q, u)

}

• Now, in the new environment T ∗Q1 × T ∗Q2, a version of
Maslov-Hörmander’s th. goes in this line:
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Maslov-Hörmander in (T ∗Q1 × T ∗Q2,Ω)

j πQ1×Q2

Λ = graph(f) ∼= T ∗Q1 ↪→ T ∗Q1 × T ∗Q2
∼= T ∗(Q1 ×Q2) −→ Q1 ×Q2

λ = (q(1), p(1)) 7→ (q(1), p(1); fq(λ), fp(λ)) ∼= (q(1), fq(λ); p(1), fp(λ)) 7→ (q(1), fq(λ))

W : Q1 ×Q2 × Rk → R (q1, q2, u) 7→W (q1, q2, u)

graph(f) =

{
p1 = −∂W

∂q1
(q1, q2, u), p2 =

∂W

∂q2
(q1, q2, u), 0 =

∂W

∂u
(q1, q2, u)

}
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A little algebra for Canonical Transformations -1

• (i) Canonical Transformations send Lagrangian submanifolds into
Lagrangian submanifolds:

Theorem Let
f : (M,ω) −→ (N, ω̄)

be a symplectomorphism, f∗ω̄ = ω,
and

j : Λ ↪→ (M,ω)

an embedded Lagrangian submanifold. Then

f ◦ j(Λ)

is Lagrangian in (N, ω̄).

Proof.
ω̄
∣∣
f◦j(Λ)

= (f ◦ j)∗ω̄ = j∗ ◦ f∗ω̄︸︷︷︸
=ω

= j∗ω = ω
∣∣
Λ

= 0
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A little algebra for Canonical Transformations - 2

(ii) The Composition Rule

CT1 CT2

T ∗M −→ T ∗M , T ∗M −→ T ∗M
(x0, p0) 7→ (x̄1, p̄1) (x1, p1) 7→ (x2, p2),

Given two Generating Functions:

W1(x0, x̄1;u) for CT1 : T ∗M → T ∗M

W2(x1, x2; v) for CT2 : T ∗M → T ∗M

then the canonical transformation CT21 = CT2 ◦ CT1 is generated by

W21(x0, x2;u, v, w) := W1(x0, w;u) +W2(w, x2; v)
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A little algebra for Canonical Transformations - 3

The Composition Rule

CT1 CT2

T ∗M −→ T ∗M , T ∗M −→ T ∗M
(x0, p0) 7→ (x̄1, p̄1) (x1, p1) 7→ (x2, p2),

Proof. W21(x0, x2;u, v, w) := W1(x0, w;u) +W2(w, x2; v)

p0 = − ∂W21
∂x0

p2 = ∂W21
∂x2

: p0 = − ∂W1
∂x0

(x0, w;u) p2 = ∂W2
∂x2

(w, x2; v)

0 = ∂W21
∂u

0 = ∂W21
∂v

: 0 = ∂W1
∂u

0 = ∂W2
∂v

0 = ∂W21
∂w

: 0 = ∂W1
∂x̄1

+ ∂W2
∂x1

that is: 0 = p̄1︸︷︷︸
the ‘final’ impulse of TC1

− p1︸︷︷︸
the ‘starting’ impulse of TC2
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A little algebra for Canonical Transformations - 4

• The Identity
The generating function for the trivial canonical transformation ‘identity’ is
given by

WId(x,X;u) := (X − x) · u

• The Inverse
Given a Generating Function W (x,X;u) for CT , then (CT )−1 is generated by

W (−1)(X,x;u) := −W (x,X;u)
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Geometrical synopsis of Hamilton-Jacobi equation

• The Characteristics Methods
Let

H : T ∗Q→ R

and a real number E s.t. H−1(E) 6= ∅, better: rk dH
∣∣
H−1(E)

= 1,

• a classical (C1) solution S(q) of the related H-J equation

H(q,
∂S

∂q
(q)) = E

• (if there exists...maybe just only local... and so on)
• can be thought as an
exact Lagrangian submanifold Λ = im(dS) globally transverse to the fibers
of πQ : T ∗ → Q

Λ = im(dS) ⊂ H−1(E)
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Geometrical synopsis of Hamilton-Jacobi equation

• How to (geometrically) generalize ?
• Def. - Geometrical solutions of H-J: We say that a Λ, Lagrangian in T ∗Q,
is a geometrical solution of H-J H = E if

Λ ⊂ H−1(E)

• Recalling dimensions:

dimQ = n, Λ︸︷︷︸
n

⊂ H−1(E)︸ ︷︷ ︸
2n−1

⊂ T ∗Q︸︷︷︸
2n

• By relaxing transversality, we accept the possible ‘multivalued’ character of
the Lagrangian submanifolds as solutions of H-J

• We are saying nothing now about the topology of j:
immersion/embedding,..., j(Λ) could be dense into...
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Geometrical synopsis of Hamilton-Jacobi equation

• What’s the recipe to build Lagrangian submanifolds Λ into H−1(E) ?

• The 2-form ω is represented by the skw 2n× 2n matrix

E =

(
O I
−I O

)
, ET = E−1 = −E and E2 = −I,

• consider the Hamiltonian vector field XH related to H:
• it is defined as an equality between 1-forms:

iXHω = −dH

〈(
O I
−I O

)(
Xq
H

Xp
H

)
, ·
〉

= −

〈(
∂H
∂q
∂H
∂p

)
, ·

〉

⇒ XH =

(
Xq
H

Xp
H

)
=

(
∂H
∂p

− ∂H
∂q

)
• Theorem (Origin of Characteristics Method) If the Lagrangian
j : Λ ↪→ T ∗Q solves geometrically H-J: H = E, that is Λ ⊂ H−1(E),
then the Hamiltonian vector field is tangent to Λ:

XH(j(λ)) ∈ TλΛ ∀λ ∈ Λ
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Characteristics Method for Hamilton-Jacobi equation

• Theorem (Origin of Characteristics Method) If the Lagrangian
j : Λ ↪→ T ∗Q solves geometrically H-J: H = E, that is Λ ⊂ H−1(E),
then the Hamiltonian vector field is tangent to Λ:

XH(j(λ)) ∈ TλΛ ∀λ ∈ Λ

———–
• Proof. Since any tangent vector to Λ is also (we adopt trivial identifications:
Dj(λ)v ≈ v)) a tangent vector to H−1(E), it is on the kernel of dH,

v ∈ TλΛ ⇒ dH(j(λ))v = 0

iXHω = −dH iXHω v = −dH v = 0

ω(XH , v) = 0 ∀v ∈ TλΛ

⇒ XH is ω-orthogonal to TλΛ; since
(i) the space of the vectors ω-orthogonal to TλΛ is of dimension 2n− n = n
(ω is not degenerate), and since
(ii) all the vectors of TλΛ are ω-orthogonal to TλΛ itself (j∗ω = 0), necessarily
XH is in TλΛ.
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Characteristics Method for Hamilton-Jacobi equation

• As a consequence:

• take into H−1(E) a n-1-submanifold `0,

`0︸︷︷︸
n−1

⊂ H−1(E)︸ ︷︷ ︸
2n−1

• such that: XH /∈ T`0 (Transversality Condition)

• the candidate solution ‘starting’ from `0 is

Λ =
⋃
λ∈R

φλXH (`0)

• ⇒ dimension is correct (i.e. n),

• ⇒ and surely Λ ⊂ H−1(E), from the conservation of H along φλXH

• ⇒ at the end, we can also check that it is effectively Lagrangian: ω|Λ = 0
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Characteristics Method for evolutive Hamilton-Jacobi equation

• The evolutive case Let Q be a smooth, connected and closed (i.e: compact
& ∂Q = ∅) manifold.
• Take a Hamiltonian

H : R× T ∗Q→ R

• The Classical Cauchy Problem (H ∈ C2, σ ∈ C1):

(Cauchy Pr.)


∂S
∂t

(t, q) +H
(
t, q, ∂S

∂q
(t, q)

)
= 0,

S (0, q) = σ (q) ,

• We proceed by a space-time ‘homogeneization’:
•

H : T ∗(R×Q) −→ R

(t, q; τ, p) 7−→ H := τ +H(t, q, p)

• with the symplectic form on T ∗(R×Q):

ω = dτ ∧ dt+ dp ∧ dq
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Characteristics Method for evolutive Hamilton-Jacobi equation

• the evolutive H-J ∂S
∂t

(t, q) +H(t, q, ∂S
∂q

(t, q)) = 0 reads:
•

H = 0

• take into H−1(0) the following n-submanifold `0,

`0︸︷︷︸
n

⊂ H−1(0)︸ ︷︷ ︸
2n+1

⊂ T ∗(R×Q)︸ ︷︷ ︸
2n+2

• `0 encodes the initial data:

`0 :=

{(
0, q,−H

(
0, q,

∂σ

∂q
(q)

)
,
∂σ

∂q
(q)
)

: q ∈ Q
}
⊂ H−1 (0) ⊂ T ∗ (R×Q)

•

the flow φtXH of XH is ‘substantially’ the flow of XH :



ṫ = 1

q̇ = ∂H
∂p

τ̇ = − ∂H
∂t

ṗ = − ∂H
∂q
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Characteristics Method for evolutive Hamilton-Jacobi equation

• the (n+1)-dimensional Lagrangian submanifold, geometrical solution of
the Cauchy Problem for t ∈ [0, T ], is
•

Λ =
⋃

t∈[0,T ]

φtXH(`0) ⊂ T ∗(R×Q)

• Some remarks:
• Λ is the collection of the wave front sets at any t ∈ [0, T ]:

φtXH(`0)

• Furthermore, the φtXH(`0) are Lagrangian submanifolds in T ∗Q
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Generating Functions for evolutive Hamilton-Jacobi equation

• Generating Function for Λ?

• Under suitable conditions, from the above
Lagrangian solution Λ, we have to provide a global Generating Function

• if
Wt(q0, q1;u)

is a global Generating Function for the symplectomorphism
φtXH : T ∗Q→ T ∗Q,

• then:
St(q; u, ξ︸︷︷︸

aux. p.

) := σ(ξ)︸︷︷︸
g.f. of im(dσ)

+ Wt(ξ, q;u)︸ ︷︷ ︸
Geometric Propagator, Green kernel

• is generating the wave front set for t ∈ [0, T ]: φtXH(`0)
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Generating Functions for evolutive Hamilton-Jacobi equation

• (Overcaming) Drawback: note that for Wt(ξ, q;u), and so for St(q;u, ξ), the
dimension k of the space of the aux. par., Rk, is depending of t, growing with
t.

• A new strategy:

(i) To provide a Generating Function St(q;

v:=︷︸︸︷
ξ, u ) for Λ with a space v ∈ Rk, k

uniform (independent) of t ∈ [0, T ]

(ii) under suitable hypotheses on H and σ, for any fixed (t, q) ∈ [0, T ]×Q, to
pick out a well precise (among many) critical value for S,

•

∂St
∂v

(q; v) = 0

• call it:
S(t, q)

• this will be the candidate weak function we are looking for!
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Aims and motivation

To sum up:
• Maslov-Hörmander theorem claims that (locally) every Lagrangian
submanifold admits Generating Functions W (q, ξ) : p = W,q, 0 = W,ξ

• There exist three operations linking (again locally) all the Generating
Functions for a same Lagrangian submanifold
• Now, our task is to derive, from a Generating Function of a Lagrangian
submanifold geom. sol. of H-J equ., a suitable weak (true) function

• we have to pick out, to select, Hamiltonians providing H-J equ. and relative
geom. solutions with a
• (i) unique global Generating Function,
• and (ii) such that it admits, for any q, a well precise (universal, in a sense)
critical value W ∗: 0 = W,ξ
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Aims and motivation

• (i) unique global Generating Function?
• → by Amman-Conley-Zehnder method (a sort of Lyapunov-Schmidt with a
Fourier cut-off) or
• → by Chaperon method (said of broken geodesics) surely Hamiltonians with
quadratic p-dependence and q ∈M compact with ∂M = ∅, admit unique
global Generating Function
• more, these last Generating Functions are Quadratic at Infinity (GFQI):

for |ξ| > C (large) : W (q, ξ) = ξtAξ, detA 6= 0

• they are Palais-Smale,
• so min-max and Lusternik-Schnirelman theory does work:

• and finally a well precise –the above point (ii)– min-max critical value can
be achieved.
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Generating Functions Quadratic at Infinity

• DEF 1 W is GFQI iff:

for |ξ| > C (large) : W (q, ξ) = ξtAξ, detA 6= 0

• A generalization of the above def., introduced by Viterbo and studied in
detail by Theret, is the following:
• DEF 2 A generating function W : M × Rk → R, (q, ξ) 7→ S(q, ξ), is
asymptotically quadratic if for every fixed q ∈M

||W (q, ·)− P(2)(q, ·)||C1 < +∞, (1)

where P(2)(q, ξ) = ξtA (q) ξ + b(q) · ξ + a(q) and A (q) is a nondegenerate
quadratic form.

• The two defs are equivalent, up to the above three operations!
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Synopsis on min-max and Lusternik-Schnirelman theory by Relative
Cohomology

•
Let f be a C2 function on a manifold X. We shall assume either that X is
compact or that f satisfies the Palais-Smale condition:

• P-S Any sequence (xn) such that f ′(xn)→ 0 and f(xn) is bounded has
converging subsequence.

• Note that if x is the limit of such a subsequence, it is a critical point of f .
• The aim of Lusternik-Schnirelman theory (L-S theory. , for short) will be to
give a lower bound to the set of critical points of f on X in terms of the
topological complexity of X.
• We denote the sub-level sets by Xa = {x ∈ X|f(x) ≤ a}.
• We now define this topological complexity in terms of cohomology

• The idea of utilizing forms in order to construct critical values of f comes
back to Birkhoff and Morse.
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Synopsis on Relative Cohomology

• Let Y ⊂ X be two manifolds, ι : Y ↪→ X. Define the complex of relative
forms

Ωq(X,Y ) = Ωq(X)⊕ Ωq−1(Y )

and the following relative exterior differential (we will keep using the symbol d
to indicate it)

dq : Ωq(X)⊕ Ωq−1(Y ) −→ Ωq+1(X)⊕ Ωq(Y )

d(ω, θ) : = (dω, ι∗ω − dθ) ∈ Ωq+1(X)⊕ Ωq(Y ).
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Synopsis on Relative Cohomology

• The relative form (ω, θ) is relatively closed if

d(ω, θ) = (dω, ι∗ω − dθ) = (0, 0)

that is, if ω is closed in X,
its restriction to Y is exact, and θ is a primitive.

• The relative form (ω, θ) is relatively exact if there exists
(ω̄, θ̄) ∈ Ωq−1(X)⊕ Ωq−2(Y ) such that d(ω̄, θ̄) = (ω, θ), more precisely,
ω = dω̄ and θ = ι∗ω̄ − dθ̄.

• Observe that d2 = 0:

d2(ω, θ) = d(dω, ι∗ω − dθ) = (d2ω, ι∗dω − d(ι∗ω − dθ)) = (0, 0).
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Synopsis on Relative Cohomology

• The relative cohomology is by definition the space of quotients

Hq(X,Y ) =
Ker dq

Im dq−1
=
Zq(X,Y )

Bq(X,Y )
.

Using the notation

B∗(X,Y ) =
⊕
q≥0

Bq(X,Y ), H∗(X,Y ) =
⊕
q≥0

Hq(X,Y ), etc.

The elements of H∗(X,Y ) are equivalence classes of elements
(ω, θ) +B∗(X,Y ), with (ω, θ) ∈ Z∗(X,Y ).

We have seen that ω must be closed in X and exact in Y with θ a primitive.
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Synopsis on Relative Cohomology

• Theorem 1 Let X,X ′, Y, Y ′ be manifolds, f : Y → X an application
(e.g. an embedding f : Y ↪→ X) and

ϕ : X → X ′, ψ : Y → Y ′

two diffeomorphisms. Define f ′ := ϕ ◦ f ◦ ψ−1,

Y
f //

ψ

��

X

ϕ

��
Y ′

f ′
// X ′

Then
H∗(X,Y ) ≡ H∗(X ′, Y ′)

(invariance by diffeomorphisms)
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Synopsis on Relative Cohomology

• Theorem 2 For every diffeomorphism f : Y → X, one has
H∗(X,Y ) = 0.

Proof.
One can apply theorem 1,

Y
f //

f

��

X

idX

��
X

idX

// X

and observe that the closed forms on X, that also are exact on X, vanish in
H∗(X,X) = 0.

(trivial cohomology between diffeomorphic manifolds)
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Synopsis on Relative Cohomology

• Theorem 3 Let Z ⊆ Y ⊆ X, i and j be the inclusions:

i j
Z ↪→ Y ↪→ X

The sequence

i j

H∗(X,Y ) −→ H∗(X,Z) −→ H∗(Y,Z)

is exact, which means: Im i = Ker j.

• Proof. The map i takes a (ω, θ) in H∗(X,Y ) and maps it to an element of
H∗(X,Z) by restricting the domain of θ, from Y to Z.

The map j takes an (ω, θ) in H∗(X,Z) and maps it in H∗(Y,Z) by
restricting the domain of ω, from X to Y .

The kernel of j are all the closed forms ω in X, that vanish (so that are exact,
think of equivalence classes) in Y , and hence in Z.

The image of i are all the closed forms ω in X, that are exact in Y , hence
remaining exact after restriction to Z.
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Synopsis on Relative Cohomology

• In summary: Relative Cohomology is invariant
• (i) under diffeomorphisms,
• and also
• (ii) under retractions:
Given ι : S ↪→ X, S is a retract of X if ∃ a continuous map (called retraction)
r : X → S such that r(y) = y, ∀y ∈ S.
In other terms: r ◦ ι = idS , that is the inclusion ι admits a continuous left
inverse,

S
ι
↪→X r−→S

r ◦ ι = idS

• (iii) under excisions:
∃ isomorphism

j∗ : H∗(X,Y ) −→ H∗(X \ U, Y \ U)

if the open U is disjoint from the boundary of Y , then U can be eliminated
without changing cohomology

Variational solutions of Hamilton-Jacobi equations - 3 Relative Cohomology, Palais-Smale, Min-max solutions



Synopsis on min-max and Lusternik-Schnirelman theory by Relative
Cohomology

• Take the pair (f,X) P-S, f : X → R
• Take a < b,
• Consider Xb, Xa, and f−1[a, b] = Xb \Xa

• Suppose no critical value of f in [a, b]
• ⇒ Theorem: Xb and Xa are diffeomorphic.
• ⇒ by (invariance by diffeomorphisms)

H∗(Xb, Xa) = 0

• A sketch of proof of the above Theor:

∇f 6= 0 in f−1[a, b], by the flow of a vector field, which in f−1[a, b] is
X = − ∇f

‖∇f‖2 , d
dt
f ◦ φtX = ∇f · X = −1, so

φb−aX : Xb → Xa

is the diffeomorphism we are looking for.

• (Rem: by P-S, ‖∇f‖ is ‘bounded away from zero’, so X is Lip)

Variational solutions of Hamilton-Jacobi equations - 3 Relative Cohomology, Palais-Smale, Min-max solutions



Synopsis on min-max and Lusternik-Schnirelman theory by Relative
Cohomology

• Thus, something more interesting may occur in Xb \Xa if there exists some
non vanishing class α 6= 0 in H∗(Xb, Xa)
• More precisely, the following Theorem holds:

• Theorem (min-max) Let α 6= 0 in H∗(Xb, Xa). For any a ≤ λ ≤ b we write:

ιλ : Xλ ↪→ Xb

and denote the induced map between relative cohomologies by

ι∗λ : H∗(Xb, Xa)→ H∗(Xλ, Xa)

• (Note that: ι∗bα = α, and ι∗aα = 0)
• Then

c(α, f) := inf
{
λ ∈ [a, b] : ι∗λα 6= 0

}
• is a critical value for f .
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A proof of the min-max Theorem

•
Proof.
By contradiction: for α ∈ H∗(Xb, Xa), α 6= 0, the value c(α, f) is a regular
value for f .
• (PS) ⇒ the set of critical points of f in f−1([a, b]) is a compact set, then
closed. There exists a ε (small) such that [c− ε, c+ ε] does not contain critical
values4 of f . Hence, in view of an above theorem,

H∗(Xc+ε, Xc−ε) = 0

• Consider now the exact sequence based on: Xa ⊆ Xc−ε ⊆ Xc+ε

(rem. Th. 3 above):

0 = H∗(Xc+ε, Xc−ε) // H∗(Xc+ε, Xa)
? // H∗(Xc−ε, Xa)

α ∈ H∗(Xb, Xa)

i∗c+ε

OO

• Since the horizontal sequence is exact, one has that the kernel of ? is the null
space, hence ? is injective. By definition of c, α 6= 0 in H∗(Xc+ε, Xa), hence
its image under the map ? should be non-zero: α 6= 0 in H∗(Xc−ε, Xa), this
fact contradicts the definition of c.

4in other words, c cannot be an accumulation point of critical values
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It is time to come back to GFQI

•
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Quadraticity at infinity

• We will see that,
at least for Hamiltonians which are quadratic (a generic hyperbolic q.f.) on p’s
and with possible compactly supported ‘perturbation’ on [0, T ]× T ∗Tn, like:

H =
1

2
ptAp+ V (t, q, p)

• the Lagrangian submanifold Λ, geometrical solution of the Cauchy Problem
for The evolutive case

(Cauchy Pr.)


∂S
∂t

(t, q) +H
(
t, q, ∂S

∂q
(t, q)

)
= 0,

S (0, q) = σ (q) ,

•
is generated by a Generating Function Quadratic at Infinity,

St(q; ξ, U), with respect to the aux. parameters (ξ, U)
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Quadraticity at infinity: uniqueness & Palais-Smale

• A Theorem by Viterbo globalizes to the GFQI the already known (local)
theorem characterizing, by three operations, all the (local) GF of a same
Lagrangian submanifold Λ.
• ⇒ In essence: the GFQI are unique, up to the three operations

• Together with uniqueness, we gain also the following crucial property:

•
GFQI are Palais-Smale

• This is a crucial step in order to define the minmax or variational solution of
H-J
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Quadraticity at infinity: Palais-Smale

• Theorem Let f : M × Rk → R, f : (q, ξ) 7→ f(q, ξ) be a GFQI. Then, for
any fixed q, f(q, ·) is Palais-Smale.

• Proof. For every fixed q, let {ξj}j∈N be a sequence such that

|f(q, ξj)| ≤ C̄ < +∞, lim
j→+∞

∂f

∂ξ
(q, ξj) = 0

If the sequence {ξj}j∈N is, from a certain index on, in a compact set Ω, then
there must be a converging subsequence, let say that ξ̄ is its limit. This limit
must obviously be a critical point. Let us verify that nothing different can
happen. Since f is a GFQI, then for |ξ| > C, f(q, ξ) = ξTAξ, where ξTAξ is a
non-degenerate quadratic form. If there were only finite terms of the sequence
in some Ω compact set, it would follow that limj→+∞ |ξj | = +∞. Then the
terms ξj would end up outside from the ball B(C), and this would contradicts
the hypothesis, since in such case

∂f

∂ξ
(q, ξj) = 2Aξj

Recalling that A is non-degenerate, ∂f
∂ξ

(q, ξj) would then tend to ∞ and not to
zero.

Variational solutions of Hamilton-Jacobi equations - 3 Relative Cohomology, Palais-Smale, Min-max solutions



GfQI: sub-level sets for great |c|

•
Let f(q, ξ) be a GFQI:
if |ξ| > K then f(q, ξ) = ξtAξ with At = A non-degenerate.
Let R be the spectral radius of A, i.e.the supremum of the absolute value |λ| of
the eigenvalues λ of A, Aξλ = λξλ,

−R |u|2 ≤ ξtAξ ≤ R |u|2.

If for chosen (large enough) c > 0 such that

−c < min
ξ∈B(K)

f(ξ) ≤ max
ξ∈B(K)

f(ξ) < c, and RK2 < c,

then
fc = Ac, f−c = A−c

hence:

H∗(fc, f−c) = H∗(Ac, A−c)
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Variational min-max solutions for H-J equations

•
We utilize a result from algebraic geometry:

it is well know that the relative cohomology for A is (see next paragraph for
further clarifications)

Hh(Ac, A−c) =


R, if h = i, Morse index (: # of neg. eigenvalues) of A,

0, if h 6= i.

Let α be precisely the generator of the 1-dimensional Hi(Ac, A−c).
We define the Variational min-max solutions for H-J equations:

S(t, q) := c(α;S(t, q; ·))

• Proceeding in this way for every (t, q), the solution defined with this
technique is known as the min-max, or variational solution, by Chaperon
Sikorav Viterbo.
It comes out that it is a Lipschitz-continuous function (see the unpublished
work of Ottolenghi-Viterbo) and the beautiful book of Siburg. This last fact is
rather surprising, it is the same regularity of the viscosity solutions.
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Interlude: Relative Cohomology of quadratic forms

• Rem: Q := ξTQξ, Qc := {ξ ∈ RN : Q ≤ c}, A := Q−(c+ε)

• A ‘graphical’ explanation of H∗(Qc, Q−c) ∼= H∗(Dk− , ∂Dk−):
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Interlude: Relative Cohomology of quadratic forms

• A := Q−(c+ε),
We have seen:

H∗(Qc, Q−c) ∼=by excision H
∗(Qc\

◦
A,Q

−c\
◦
A) ∼=by retraction H

∗(Dk− , ∂Dk−)

• H∗(Dk− , ∂Dk−) = H∗c (Dk− , ∂Dk−) ∼= H∗c (Dk− \ ∂Dk− , ∅) ∼= H∗c (
◦
Dk−),

• H∗c (
◦
Dk−) ∼= H∗c (Rk−),

A classical theorem says: Hp
c (Rk−) =


R, if p = k−

0, if p 6= k−
• finally:

H∗(Qc, Q−c) ∼= H∗(Dk− , ∂Dk−) ∼= R
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A ∞-parameter Generating Function

• Here the construction of a global generating function for the geometric
solution for H (q, p) = 1

2
|p|2 + V (q) on T ∗Rn

(then, the case 1
2
pTBp+ V , B hyperbolic) :

•

(CP )H


∂S
∂t

(t, q) + 1
2
| ∂S
∂q

(t, q) |2 + V (q) = 0

S (0, q) = σ (q) ,

• Let us consider the set of curves:

Γ :=
{
γ (·) = (q (·) , p (·)) ∈ H1 ([0, T ] ,R2n) : p (0) = dσ (q (0))

}
• Sobolev imbedding theorem, H1

(
(0, T ) ,R2n

)
↪→ C0

(
[0, T ] ,R2n

)
• The candidate gen. funct. is the Hamilton-Helmholtz functional Action:

A : [0, T ]× Γ −→ R

(t, γ (·)) 7→ A [t, γ (·)] := σ (q (0)) +

∫ t

0

[p (r) · q̇ (r)−H (r, q (r) , p (r))] dr
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A ∞-parameter Generating Function

•
A : [0, T ]× Γ −→ R

• Since γ̇ = Φ (velocities) ∈ L2,
• we introduce the following bijection representation g for [0, T ]× Γ :

g : [0, T ]× Rn × L2 ((0, T ) ,R2n) −→ [0, T ]× Γ

(t, q,Φ) 7−→ g (t, q,Φ) = (t, γ (·)) , γ (·) = γt,q (·)

Φ = (Φq,Φp)

•

γ (s) :=

q −
∫ t

s

Φq (r) dr,
∂σ

∂q

(
q −

∫ t

0

Φq (r) dr

)
︸ ︷︷ ︸

q(0)

+

∫ s

0

Φp (r) dr


•
To be more clear, we remark that the second value of the map g (t, q,Φ) is the
curve γ (·) = (q (·) , p (·)) which is
1) starting from (q (0) , dσ (q (0))), such that
2) γ̇ (·) = Φ (·), and
3) q (t) = q.
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A ∞-parameter Generating Function

• The geometrical solution is realized by the web of the characteristics coming
out from the n-dim initial manifold:

(ΓH)σ =

(
0, q;−H

(
0, q,

∂σ

∂q
(q)

)
,
∂σ

∂q
(q)

)
⊂ T ∗Rn+1

• Theorem The infinite-parameter generating function:

W = A ◦ g : [0, T ]× Rn × L2 −→ R, (2)

(t, q,Φ) 7−→W (t, q,Φ) := A ◦ g (t, q,Φ) ,

generates LH =
⋃

0≤t≤T ϕ
t
H

(
(ΓH)σ

)
, the geometric solution for the

Hamiltonian H (q, p) = 1
2
|p|2 + V (q):

H-J :
∂W

∂t
(t, q,Φ)

∣∣∣
Φ:DW

DΦ
(t,q,Φ)=0

+H

(
t, q,

∂W

∂q
(t, q,Φ)

∣∣∣
Φ:DW

DΦ
(t,q,Φ)=0

)
= 0

Initial data :
∂W

∂q
(0, q,Φ)

∣∣∣
Φ:DW

DΦ
(t,q,Φ)=0

=
∂σ

∂q
(q)

• Note: L2 is the ∞-dimensional space of auxiliary parameters
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The finite reduction (A-C-Z method)

• Since DW
DΦ

(t, q,Φ) = 0 selects in Γ characteristic curves, we will reduce the
L2-set of {(Φq,Φp)} to the smaller L2-set of the alone {Φq}:
it is substantially the Legendre transformation at work.
•

DW

DΦ
(t, q,Φ) = 0 ≈

{
q̇ = p

ṗ = − ∂V
∂q

(q)
⇒


Φq (s) = ∂σ

∂q

(
q −

∫ t
0

Φq (r) dr
)

+
∫ s

0
Φp (r) dr

Φp (s) = −∂V
∂q

(
q −

∫ t

s

Φq (r) dr

)
︸ ︷︷ ︸

Φp is determined by Φq

Hence

Φq (s) =
∂σ

∂q

(
q −

∫ t

0

Φq (r) dr

)
−
∫ s

0

∂V

∂q

(
q −

∫ t

r

Φq (τ) dτ

)
dr (•)

• ⇒ Here (•) is a fixed point problem for Φq(·)
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The finite reduction (A-C-Z method)

• By simplicity, in the following, we set the initial data:

σ ≡ 0

• Actually, this is not restrictive:
Consider the canonical transformation:{

q = q̃
p = p̃+ ∂σ

∂q
(q̃)

(easily we see : dp ∧ dq = dp̃ ∧ dq̃)

K(q̃, p̃) = H(q, p)
∣∣
q=q̃, p=p̃+ ∂σ

∂q
(q̃)

= H(q̃, p̃+
∂σ

∂q
(q̃))

If (q̃(t), p̃(t) is a characteristic for K, starting from p̃(0) = 0, then

(q(t), p(t)) = (q̃(t), p̃(t) +
∂σ

∂q
(q̃(t))

is a characteristic for H, starting from p(0) = ∂σ
∂q

(q(0)).
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The finite reduction (A-C-Z method)

•
For every Φq ∈ L2 ((0, T ) ,Rn), Fourier expansion:

Φq (s) =
∑
k∈Z

(Φq)k e
i(2πk/T )s

•
For an arbitrarily fixed cut-off N ∈ N, the projection maps PN and QN on the

basis
{
ei(2πk/T )s

}
k∈Z

of L2 ((0, T ) ,Rn),

PNΦq (s) :=
∑
|k|≤N

(Φq)k e
i(2πk/T )s, QNΦq (s) :=

∑
|k|>N

(Φq)k e
i(2πk/T )s

•

PNL2 ⊕QNL2 = L2 ((0, T ) ,Rn)

We will write u := PNΦq and v := QNΦq

⇒ Φq = u+ v
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The finite reduction (A-C-Z method)

• Theorem (Lip-contractive map)

Let supq∈Rn |V
′′

(q) | = C (< +∞). Fix the cut-off N .

For fixed (t, q) ∈ [0, T ]× Rn and fixed u ∈ PNL2 ((0, T ) ,Rn),
the map (try to recall (•)...)

F : QNL2 ((0, T ) ,Rn) −→ QNL2 ((0, T ) ,Rn)

v 7−→ QN
{
−
∫ s

0

∂V

∂q

(
q −

∫ t

r

(u+ v) (τ) dτ

)
dr

}
is Lipschitz with constant

Lip (F ) ≤ T 2C

2πN

(
1 +
√

2N
)

• We will choose N such that T2C
2πN

(
1 +
√

2N
)
< 1

• Denote by F (t, q, u) (s), shortly F (u), the fixed point map:

F (u) = QN
{
−
∫ s

0

∂V

∂q

(
q −

∫ t

r

(u+ F (u)) (τ) dτ

)
dr

}
.
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The finite reduction (A-C-Z method)

•
Recall the above fixed point equation for σ ≡ 0:

Φq (s) = −
∫ s

0

∂V

∂q

(
q −

∫ t

r

Φq (τ) dτ

)
dr (•)

•

→ for any u : F (u) = QN
{
−
∫ s

0

∂V

∂q

(
q −

∫ t

r

(u+ F (u)) (τ) dτ

)
dr

}
(∗)

•

→ search for some u : u = PN
{
−
∫ s

0

∂V

∂q

(
q −

∫ t

r

(u+ F (u)) (τ) dτ

)
dr

}
(∗∗)

• summing m. by m., we restore –and solve– (•):
qt,q(s) = q −

∫ t
s

Φq (r) dr|Φq=u+F(u)

• equation (∗∗) is a finite dimensional equation, sometimes said ‘bifurcation
equation’ in some analogous Lyapunov-Schmidt procedure.
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The finite reduction (A-C-Z method)

• PNL2 ((0, T ) ,Rn) ≈ Rn(2N+1):
is the (new, finitely reduced) finite-dim. space of aux. parameters u
•
Theorem The finite-parameter function:

W := [0, T ]× Rn × Rn(2N+1) −→ R,

(t, q, u) 7−→W (t, q, u) =

=

{∫ t

0

[p (s) · q̇ (s)−H (s, q (s) , p (s))] ds

} ∣∣∣
(q(s),p(s))

,

where (q (s) , p (s)) is obtained by the finite reduction, depending on t, q, u:
(q (s) , p (s)) =

= prΓ ◦ g

t, q, [u+ F (u)] (s)︸ ︷︷ ︸
Φq(s)

,−∂V
∂q

(
q −

∫ t

r

(u+ F (u)) (τ) dτ

)
︸ ︷︷ ︸

Φp(s)

 ,

generates the geometric solution for H (q, p) = 1
2
|p|2 + V (q).
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The finite reduction (A-C-Z method)

• The last task in order to prove the theorem, is to see that the ‘biforcation
equation’:

u = PN
{
−
∫ s

0

∂V

∂q

(
q −

∫ t

r

(u+ F (u)) (τ) dτ

)
dr

}
(∗∗)

is precisely given by

∂W

∂u
(t, q, u) = 0

• The other relations hold:

∂W

∂t
(t, q, u) +H(t, q,

∂W

∂q
(t, q, u)) = 0 p(0) =

∂W

∂q
(0, q, u) = 0,
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The finite reduction (A-C-Z method)

• Since the fixed point map F can also obtained by the implict function Th.,
more smoothness is gained for the generating function:

• Smoothness: For fixed (t, q) ∈ [0, T ]× Rn,
u 7→ F (u) and u 7→ ∂F

∂u
(u) are uniformly bounded.

• Theorem (G.F. Quadratic at ∞): The finite-parameters function

W := A ◦ g : [0, T ]× Rn × Rn(2N+1) −→ R,

(t, q, u) 7−→ W̄ (t, q, u) =

=

{∫ t

0

[
1

2
|q̇ (s) |2 − V (q (s))

]
ds

} ∣∣∣
q(s)=q−

∫ t
s [u(r)+(F(u))(r)]dr

is asymptotically quadratic: there exists an u-polynomial P(2)(t, q, u) such that
for any fixed (t, q) ∈ [0, T ]× Rn

||W (t, q, ·)− P(2) (t, q, ·) ||C1 < +∞

and, in this specific mechanical case, its leading term is positive defined
(Morse index is 0).
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The finite reduction (A-C-Z method), the NON-CONVEX case

• Whenever the Lagrangian L is non convex, e.g.

L(q, q̇) =
1

2
q̇TBq̇ − V (q), where B is a generically hyperbolic matrix,

• a global Legendre transformation still does work (even thought
Young-Fenchel is gone)
• Theorem (G.F. Quadratic at ∞): The finite-parameters function

W := A ◦ g : [0, T ]× Rn × Rn(2N+1) −→ R,

(t, q, u) 7−→ W̄ (t, q, u) =

=

{∫ t

0

[
1

2
q̇TBq̇ − V (q (s))

]
ds

} ∣∣∣
q(s)=q−

∫ t
s [u(r)+(F(u))(r)]dr

is asymptotically quadratic: there exists an u-polynomial P(2)(t, q, u) such that
for any fixed (t, q) ∈ [0, T ]× Rn

||W (t, q, ·)− P(2) (t, q, ·) ||C1 < +∞

and its leading term is has the Morse index 6= 0 (it will be related to the
Morse index of B).
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The finite reduction (A-C-Z method)

• Proof (trace, for the convex case)
Through the Legendre transformation,

W (t, q, u) =

{∫ t

0

[
1

2
|q̇ (s) |2 − V (q (s))

]
ds

} ∣∣∣
q(s)=q−

∫ t
s [u(r)+(F(u))(r)]dr

=

∫ t

0

{
1

2
|u (s) + (F (u)) (s) |2 − V

(
q −

∫ t

s

[u (r) + (F (u)) (r)] dr

)}
ds.

As a consequence of the compactness of V , of the uniformely boundness of F
and its derivatives, for fixed (t, q) ∈ [0, T ]× Rn we obtain that

||W (t, q, ·)− P(2) (t, q, ·) ||C1 < +∞,

where P(2) (t, q, u) is polynomial with positive defined leading term

1

2

∫ t

0

|u(s)|2ds = uTQu

(hence with Morse index 0) and linear term with uniformly bounded coefficient,
so that, W (t, q, u) is an asymptotically quadratic generating function. �
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Minmax-variational and viscosity solutions for convex Hamiltonians

• Now, given W (t, q, u), we construct the variational solution:
• For any fixed (t, q), u 7→W (t, q, u) is Palais-Smale ⇒ L.-S. does work,
• Relative Cohomology of the sub-level sets of W (t, q, u) and uTQu are
equivalent for large c > 0:

H∗(W (t, q, ·)c ,W (t, q, ·)−c) ≈ H∗(Qc, Q−c)

• We recall that the relative cohomology of quadrics is 1-dim:

Hh(Qc, Q−c) =


R, if h = i : Morse index (# of neg. eigenvalues) of Q,

0, if h 6= i.

• In the convex case we are concerning, we have i = 0: H0(Qc, Q−c) = R
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Minmax-variational and viscosity solutions for convex Hamiltonians

• Let α =1 be the generator of the 1-dimensional H0(Qc, Q−c) ≈ R
• (Note that, concerning with the absolute deRham cohomology,
for any manifold M with k connected components

H
0
dR(M) = Rk

This follows from the fact that any smooth function on M with zero derivative (i.e. locally
constant) is constant on each of the connected components of M .)
• For large c,

H
0
(W (t, q, ·)c ,W (t, q, ·)−c) = H

0
(Q

c
, Q
−c

) = R
but, for suitable small λ < c, some other connected components can arise for

W (t, q, ·)λ

so that

H
0
(W (t, q, ·)λ ,W (t, q, ·)−λ) 6= H

∗
(Q

λ
, Q
−λ

)
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Minmax-variational and viscosity solutions for convex Hamiltonians

see pictures, H0(W (t, q, ·)λ ,W (t, q, ·)−λ) = R2 = span(α1, α2)
and, in such a case,

ι
∗
λ1 = R(α1 + α2)

that is, a same constant is assigned to both connected components.
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Minmax-variational and viscosity solutions for convex Hamiltonians

•
We define the variational min-max solution for H-J:

S(t, q) = minmax(W (t, q, ; ·)) := inf {λ ∈ [−c, c] : ι∗λ1 6= 0}

•
Finally : ⇒ S(t, q) = min

u
W (t, q, ;u)
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Minmax-variational and viscosity solutions for convex Hamiltonians

• We have to recall some facts:
• (i) u 7→W (t, q, ·) is a finite reduction of

Φq(·) 7→
{
σ(q(0)) +

∫ t

0

[
1

2
|q̇ (s) |2 − V (q (s))

]
ds

} ∣∣∣
q(s)=q−

∫ t
s Φq(r)dr

• (ii) Critical points of
u 7→W (finite)

are one-to-one related to the critical points of

Φq 7→ σ +

∫
Lds (infinite)

• (iii) some more is true: Morse indices related to (infinite) are precisely
Morse indices related to (finite)
• ⇒ This is sufficient to say that the variational min-max solution:

S(t, q) = min
u∈PNL2

W (t, q;u) = inf
q̃(·):q̃(t)=q

{
σ(q̃(0)) +

∫ t

0

L(q̃(s), ˙̃q(s)) ds

}

= Lax-Oleinik semi-group : viscosity solution!
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Variational solutions for general Hamiltonians Minmax are Lipschitz

•
Lipschitz property

in the following slides: x = (q, t), u : aux. parameters

Theorem (minmax are Lipschitz) Let W (x, u) be the GFQI for a geometrical
solution (a Lagrangian submanifold) for a H-J problem,

W (x, u) = uTQu, |u| > K (: large)

Let

S(x) = minmax W (x, ·) = inf {λ ∈ [−c, c] : ι∗λα 6= 0}

where α is the class generator of Hi(Qc, Q−c), i : Morse index of A

be the related variational minmax solution of the H-J equation

H(x,
∂S

∂x
(x)) = e

Then S(x) is Lipschitz.
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Variational solutions for general Hamiltonians are Lipschitz

• Proof.
Denote by C > 0 the Lipschitz constant of the GFQI in U = Tn × [0, T ],
uniformely for ξ ∈ Rk:

C = sup
x∈U u∈Rk

∣∣∣∣∂W∂x (x, u)

∣∣∣∣
so that

|W (x, u)−W (y, u)| ≤ C|x− y| x, y ∈ U (∗)

Def.: For fixed x, let now to define, for ε > 0 arbitrary small,

ax(y) := S(x) + ε+ C|x− y|, ∀y ∈ U
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Variational solutions for general Hamiltonians are Lipschitz

•
ax(y) := S(x) + ε+ C|x− y|, ∀y ∈ U(

recall the notation for the sublevel sets: W c
x := {u ∈ Rk : W (x, u) ≤ c}

)
• We notice that

W ax(x)
x ⊆W ax(y)

y (∗∗)

In fact, if u ∈W ax(x)
x ,

W (x, u) ≤ ax(x) =︸︷︷︸
by definition of ax(y)
for y = x

S(x) + ε

from (∗),

W (y, u) ≤W (x, u) + C|x− y| ≤ S(x) + ε+ C|x− y| =︸︷︷︸
by definition of ax(y)

ax(y).
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Variational solutions for general Hamiltonians are Lipschitz

• By the very definition of S(x), and S(x) < S(x) + ε = ax(x), the relative

cohomology H∗(W
ax(x)
x ,W−c) contains5 a non vanishing class α, so, by

W
ax(x)
x ⊆W ax(y)

y , the same is true for H∗(W
ax(y)
y ,W−c). This means that

S(y) ≤ ax(y)

then,
S(y) ≤ ax(y) = S(x) + ε+ C|x− y|

for the arbitrarity of ε > 0,

S(y) ≤ S(x) + C|x− y| : S(y)− S(x) ≤ C|x− y|

By interchanging the role of x and y, we finally obtain

|S(y)− S(x)| ≤ C|x− y|, ∀x, y ∈ U

• In other words: S(x) inherits the same Lip constant C > 0 from W (x, u).

5W−cx = W−c, ∀x ∈ U and c large
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Variational solutions are not ‘Markovian’

• There is a ‘drawback’ of the variational solution C0,1: it is inherited from a
generating function of a Lagrangian submanifold, starting from a smooth, C1,
initial function σ : N → R,
Consider the application J :

J : C1,1([0, T ]× T ∗N)× C1(N)→ C0,1([0, T ]×N)

(H,σ) 7→ u =: J(H,σ)(t) = S(t, q)

Theorem The application J is uniformly continuous if all the spaces are
equipped with the C0 topology. Thus it extends to an uniformly continuous
map, still denoted by J ,

J : C0,1([0, T ]× T ∗N)× C0(N)→ C0([0, T ]×N)

in particular, fixed H,

‖J(H,σ1)− J(H,σ2)‖C0 ≤ ‖σ1 − σ2‖C0 .

• Note: it is the same non-expansive property of the Lax-Oleinik semi-group !
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Variational solutions are not ‘Markovian’

Every continuous σ ∈ C0(N) can be approximated in the uniform convergence
by a sequence of differentiable σn ∈ C1(N),
The related variational solution is J(H,σn) = uσn .
By continuity of J ,
i) uσn is a Cauchy sequence and
ii) its limit is independent of the approximating sequence σn.
⇒:
Definition: C0-variational solution Given a continuous initial datum
σ ∈ C0(N), the C0-variational solution for the Cauchy problem is the unique
function uσ ∈ C0([0, T ]×N) such that, for any arbitrary C1 approximating
sequence σn:

C1(N) 3 σn
C0

−→ σ ∈ C0(N),

with related C0,1-variational solutions J(H,σn) = uσn , we have that

lim
n→+∞

‖uσn − uσ‖C0 = 0 on [0, T ]×N. (3)
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A topological algebraic framework

• Main Theorem: Let N be compact, and

S : N × Rn 3 (x, ξ) 7−→ S(x, ξ) ∈ R

be a GFQI. Then, up to a shift of the degree by k−:

H∗(S∞, S−∞) ∼= H∗(N)
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Meaning of the Main Theorem:

H∗(S∞, S−∞) ∼= H∗(N)

⇒ For compact N , the absolute cohomology H∗(N),
is precisely the relative cohomology
of the sublevel sets of generic functions on f : N → R:

for c > 0 : −c < min f ≤ max f < c,

H∗(f∞, f−∞) = H∗(fc, f−c) = H∗(N, ∅) ∼= H∗(N)

In other words:
To look for critical values and critical points of GFQI S : N × Rk → R

is like
looking for critical values and critical points of f : N → R !
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A topological algebraic framework

•
Proof. Since S is a GFQI, for c > 0 big enough,

S±c ∼= N ×Q±c =: S±∞

It follows
(

remembering Kunneth formula:

Hn(M ×Qc,M ×Q−c) '
⊕

p+q=nH
p(M)⊗Hq(Qc, Q−c)

)
:

H∗(S∞, S−∞) ∼= H∗(N ×Q∞, N ×Q−∞) ∼= H∗(N)⊗H∗(Q∞, Q−∞) ∼=

∼= H∗(N)⊗H∗(Dk− , ∂Dk−) ∼= H∗(N)⊗H∗c (Rk−) ∼= H∗c (N×Rk−) ∼= H∗(N)

where the last one is realized by the Thom isomorphism: giving the negative
bundle

π : N × Rk− −→ N

and denoting by tk− the Poincaré dual cohomological class of the null section
(=N) of π, we get the k−-shifted isomorphism:

Hh(N) 3 α 7−→ T (α) := π∗α ∧ tk− ∈ Hh+k−
c (N × Rk−)
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A metric on the Lagrangian submanifolds set L

• We denoted by c(α,L) the min-max critical value of a GFQI relative to a
Lagrangian submanifold L ∈ L
• L : the set of Lagrangian submanifolds of T ∗N which are Hamiltonian
isotopic to OT∗N
• L1, L2 ∈ L be generated by the GFQI S1(x; ξ) and S2(x; η) respectively.
• We denote by (S1 ] S2)(x; ξ, η) the GFQI

(S1 ] S2)(x; ξ, η) := S1(x; ξ) + S2(x; η)

• Considering

(S1 ] (−S2))(x; ξ, η) = S1(x; ξ)− S2(x; η)

we note that its critical points of (S1 ] (−S2)) are precisely marking the
intersections L1

⋂
L2:

(x, p1) ∈ L1, (x, p2) ∈ L2 : 0 =
∂S1

∂x
−∂S2

∂x
= p1−p2, 0 =

∂S1

∂ξ
, 0 =

∂S2

∂η
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A metric on the group of Hamiltonian diffeomorphisms of T ∗N

• The main theorem, here in the form

H∗
(

(S1 ] (−S2))∞, (S1 ] (−S2))−∞
)
∼= H∗(N)

is telling us that we have simply to look at (the cohomology of) the base
manifold N in order to find global critical points of S1 ] (−S2).
This leads us to the
•
Definition:

γ(L1, L2) := c (µ, S1 ] (−S2))− c (1, S1 ] (−S2)) ,

where 1 ∈ H0(N) and µ ∈ Hn(N) are generators.

• γ(L1, L2) is a metric on L.
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A metric on the group of Hamiltonian diffeomorphisms of T ∗N

•
Definition Let (φt)t∈[0,1] be a Hamiltonian isotopy, φ = φ1. We set

γ̃(φ) := sup
L∈L

γ(φ(L), L)

All the Hamiltonians are now assumed to be compactly supported

• Proposition

1 γ̃(φ) ≥ 0 and γ̃(φ) = 0 if and only if φ = id,

2 γ̃(φ) = γ̃(φ−1),

3 γ̃(φ ◦ ψ) ≤ γ̃(φ) + γ̃(ψ) (triangle inequality),

4 γ̃(ψ ◦ φ ◦ ψ−1) = γ̃(φ) (invariance by conjugation).

In particular,
d(φ1, φ2) := γ̃(φ−1

2 ◦ φ1)

defines a metric on the group of Hamiltonian diffeomorphisms of T ∗N .

• Proposition Assume that φ is the time-one map associated to the
Hamiltonian H(t, x, p). Then we have

γ̃(φ) ≤ ‖H‖C0

where: ‖H‖C0 := sup[0,T ]×T∗N H(t, x, p)− inf [0,T ]×T∗N H(t, x, p)
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Consequences on variational solutions of H-J

• Beside to the above

γ̃(φ) ≤ ‖H‖C0

we have also:

• Proposition Let L1, L2 and u1, u2 be the geometric and variational
solutions for the Cauchy problems of H-J referred to the initial data σ1 and σ2

respectively. Then we have

‖u1 − u2‖C0 ≤ γ(L1, L2)

• At the end, we need both them to gain:

‖J(H,σ1)− J(H,σ2)‖C0 ≤ ‖σ1 − σ2‖C0

————
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Other consequences: Poincaré last geometrical theorem

• Poincaré last geometrical theorem Take a Hamiltonian on the cylinder
T ∗T1 like:

H(θ, I) =
|I|2

2
+ V (θ, I)

V is compactly supported on T ∗T1, for |I| > K : V ≡ 0

for I < −K : İ = 0, θ̇ = I < 0,

for I > K : İ = 0, θ̇ = I > 0,

• consider I∗ > K, and the time τ -flow ΦτH for τ : I∗τ < 2π on the ‘strip’
between I∗ and −I∗:

• so we restore a twist-like condition of the Poincaré last geometrical
theorem....
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Poincaré last geometrical theorem

• ...we should ‘open’ symplectically the cylinder T ∗T1 over R2 \ {(0, 0)}:
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Poincaré last geometrical theorem

• The symplectic twist map (Can. Transf.) of the annulus A into itself

ΦτH : A −→ A

(θ0, I0) 7−→ (θ1, I1)

admits a Generating Function Quadratic at Infinity, F (θ0, θ1; ξ):

I0 = − ∂F
∂θ0

(θ0, θ1; ξ), I1 =
∂F

∂θ1
(θ0, θ1; ξ) 0 =

∂F

∂ξ
(θ0, θ1; ξ)

• In order to find fixed points of ΦτH ,
(i) we consider the composition of F with the diagonal:

S(θ; ξ) := F (θ, θ; ξ) (is, again, a GFQI)

(ii) we search the global critical points of S, i.e., both respect to θ and respect
to ξ:
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Some other consequences of the topological algebraic framework

• the crit. points of S are the fixed points of ΦτH
• Finally, the above main theorem, here for N = T1,

H∗(S∞, S−∞) ∼= H∗(T1)

tells us that we have to look at the cohomology of the torus T1, precisely

#{fixed point of ΦτH} ≥ cl(T1)︸ ︷︷ ︸
lower bound of Lusternik−Schnirelman

= 2 cl : cup-length ≈ ‘category’

• The above result can be thought in any dimension n:

#{fixed point of ΦτH} ≥ cl(Tn) = n+ 1

• towards Arnol’d conjecture....

•
THE END
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O. Bernardi, F. Cardin, Poincaré-Birkhoff periodic orbits for mechanical
Hamiltonian systems on T ∗Tn J. Math. Phys. 47 (2006), no. 7, 072-701,
15 pp.

O. Bernardi, F. Cardin, Minimax and viscosity solutions in the convex
case. Commun. Pure Appl. Anal. 5, no. 4, 793-812, (2006).

Variational solutions of Hamilton-Jacobi equations - 4 Amann-Conley-Zehnder reduction - Minmax & viscosity



O. Bernardi, F. Cardin, On C0-variational solutions for Hamilton-Jacobi
equations Discrete and Continuous Dynamical Systems, Vol. 31, no.2,
385-406, (2011)
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Variational solutions of Hamilton-Jacobi equations - 4 Amann-Conley-Zehnder reduction - Minmax & viscosity



L.D. Landau, E.M. Lifshits, Theoretical physics. Vol. I Mechanics. Fourth
edition, Moscow, 216 pp. (1988).

P. Liebermann, C.M. Marle, Symplectic geometry and analytical
mechanics. D. Reidel Publishing Co., Dordrecht, qvi+526 pp. (1987).

P.L. Lions, Generalized solutions of Hamilton-Jacobi equations. Research
Notes in Mathematics, 69. Boston - London - Melbourne: Pitman
Advanced Publishing Program. 317 pp. (1982).

A. Ottolenghi, C. Viterbo, Solutions generalisees pour l’equation de
Hamilton-Jacobi dans le cas d’evolution. Unpublished.

G.P. Paternain, L. Polterovich, K.F. Siburg, Boundary rigidity for
Lagrangian submanifolds, non-removable intersections, and Aubry-Mather
theory. Dedicated to Vladimir I. Arnold on the occasion of his 65th
birthday. Mosc. Math. J. 3, no. 2, 593-619, 745, (2003).

J.C. Sikorav, Sur les immersions lagrangiennes dans un fibré cotangent
admettant une phase génératrice globale. C. R. Acad. Sci., Paris, t. 302,
Sér. I, no. 3, 119-122, (1986).
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